
NEURAL NETWORKS STARTER KIT

COPYRIGHT  Southern Scientific CC
17 CAPRI RD 

ST JAMES
SOUTH AFRICA 7951

The Neural networks code used to construct this release was developed as an exercise to teach 
myself about OOP and MS Windows, and to design my own tools for the construction of neural 
networks.

This release is intended to help people get started, and contains : 

1) A working backprop neural network application for windows (SLUG.EXE),
together with the resource files (and an example for DOS). 

2) The source code for these programs, to illustrate the use of the starter kit.
3) Full documentation on the basic units contained in the starter kit, so that 
you can see exactly what it contains.

These are shareware.  Please distribute these as you see fit.  If you find them useful or 
instructive, please fill in the form below and mail it, together with $10, to the above address.  
Questions can be directed to me via E-mail : CHUCK@PSIPSY.UCT.AC.ZA

THE STARTER KIT is not shareware, costs $40 for people who register this release ($50 
otherwise), and contains the DOS and Windows executables (TPU and TPW for BP7) of the 
basic unit and the dynamic matrices and vectors unit.  You also get the source code for the BPNet
unit, which shows how to use the basic units to construct a network object.  Included is a Croupier
object which allows you to randomly "deal" from a deck of data, and some other small things.

You can pay for SLUG or order the starter kit by phone/fax using a Visa or Mastercard. The 
phone/fax numbers are (27)-21-788-6613/788-2248. If you want to use E-mail or fax, please use 
the order form below and remember your phone/fax number and your credit card number.  If you 
use papermail, you must include a bank order drawn on a South African bank.

The Implementation of the basic units, NNUNIT and DYNA2

The basic unit implements a Neuron object and a Neuralnet object, hopefully in a very general 
way, and defines an underlying paradigm for specific network constructions.  Creating a network 
is easy, as the following code shows:

    neuralnet.init(incount+hiddencount+outcount+1);
                                   {fully connected...}
                                   {insert fields}
    addfield(inputfield,1,incount);
    addfield(hiddenfield,incount+1, incount+hiddencount);
    addfield(outputfield,incount+hiddencount+1,count-1);
    addfield(offset,count,count);

    setfieldsignal(hiddenfield,sigmoid);
    setfieldsignal(outputfield,sigmoid);
    setfieldsignal(offset,one);

    setconnections;
    calcallstates;    {essentially switches on offset neuron}



{---------------------------------}
procedure simpleBPnet.setconnections; {connect feedforward net}
{---------------------------------}
begin
    nofeedback;
    disconnectbetween(inputfield,outputfield);
    disconnectbetween(outputfield,inputfield);
    disconnectbetween(outputfield,hiddenfield);
    disconnectbetween(hiddenfield,inputfield);

    disconnectbetween(offset,inputfield);
    disconnectbetween(inputfield,offset);
    disconnectbetween(hiddenfield,offset);
    disconnectbetween(outputfield,offset);

    disconnect(inputfield);
    disconnect(outputfield);
    disconnect(hiddenfield);

end;

It essentially sees a network as a 'bag of neurons', completely connected, but divided into 'neuron
fields' (think of these as subsets, not necessarily disjoint) which, for instance, you can use to 
define neural net layers higher up in the object hierarchy.  Neurons can easily change their 
transfer funtions, and networks can easily change their connectivity.  Several neuron transfer 
funtions are provided, and you can easily add you own.

The Dyna2 unit contains dynamic matrices and vectors, which are used in NNUnit to define 
connectivity, and generally run things like data presentation and training.

Extensive use is made of the Tcollection object in the implementation (see the included 
documentation), and all objects are streamable.

HOW TO USE SLUG

SLUG is a front end for a backprop net with 3 layers, using a sigmoid transfer function in the 
hidden layer and linear transfer functions in the output layer.  SLUG uses the steepest descent 
optimization method (simple backprop). You can set the number of nodes in each layer, and 
training parameters.
SLUG saves networks on dos streams.  

SLUG tries to be very friendly to other Windows apps, and thus slows down a little.  Still, you may
find that it hogs too much CPU - let me know.

Most of the functionality of the menu is duplicated with buttons on the control panel.  This area is 
divided into two panels, one to report progress ( for this release, only the error box and data count
box will show change during training) and another to reflect current static training settings.  The 
data count box shows how many times the dataset has been presented.

The training parameters panel shows the current training parameters.  These are edit controls 
(they'll be static in the next release), but you can only enter the data through the parameters 
dialog box.

Most buttons are self explanatory.  The shake button randomly perturbs the weights slightly.  
This is useful if you find your net stuck in a local minimum during training.  Hit the shake button a 
couple of times to try to get out.  It is also good to do this before training starts.



When you open a logfile, you can first check the append box to append training info to an 
existing logfile.  The logfile holds a record of the training progress, and reports the weights matrix 
and performance of the net.  Both data and log files must be open before training can commence.

The pause button pauses training, if you wish to do this for some reason.  It also records the 
pause in the log file.

The file menu is used to save and retrieve networks from disk.  If a valid network is present, the 
network icon switches on and the structure of the layers is displayed.
The parameters menu is used to set training parameters.  The items presented in the dialog box
are:

Learning rate :  This parameter effectively determines the step size during the downhill crawl of 
the error parameter in weight space.  Setting this parameter is a black art.  All I can tell you is that
the larger the network, the smaller this should initially be.  Ballpark figure for the 'toy' problem 
XOR is 0.5.  Don't panic if the error sometimes creeps up during training - this happens for 
various technical reasons, but usually turns around after a while.  If it shoots up, you can click the 
parameters button during training and reduce the value.  Also remember that the weights are 
randomized before training starts.  In all optimization methods, where you end up depends on 
where you start, so if your net gets stuck in a local minimum, and shaking it doesn't get you out, 
you may have success by starting over (i.e. the training sessions are not necessarily repeatable).

Momentum : This is a measure of how much of a previous training step is retained in the current 
step.  Make this betweeen 0 and 1.  I usually have it less than 0.9.

Kmod : Unused at present. 

Maximum error : This is the convergence criterion. The error is calculated as 
SUM(over output layer) ( |desired output - current output | )

Maximum iterations : When to give up.

The RUN menu item reads an input file and propagates the data through the net once.  This is 
intended for trained nets.

The structure of the data file :

Training and running data are stored in text files.  For the windows app, two ignored lines followed
by any number of lines with an input/desired output pair (floating point) on each line.  Eg for the 
XOR problem, the datafile looks like this :

test XOR ------- line 1 : ignored in SLUG
4 0.5 0.8 0.0 0.1 10000 ------- line 2 : ignored in SLUG
1 1 0 ------- first IO pair
0 0 0
1 0 1
0 1 1 ------- last IO pair and last line in the file

In the DOS example, the first line is the title of the run, and the second line contains, in order :
number of training lines,learning rate,momentum,kmod,maximum error, maximum iterations.

The log file for the above example typically looks like this :

IO MATRIX



 1.0000  1.0000  0.0000   ---------- the matrix provided by you 
 0.0000  0.0000  0.0000
 1.0000  0.0000  1.0000
 0.0000  1.0000  1.0000

DESIRED MATRIX   ----------- the last column of the IO matrix
 0.0000
 0.0000
 1.0000
 1.0000

INPUT MATRIX
 1.0000  1.0000
 0.0000  0.0000
 1.0000  0.0000
 0.0000  1.0000

Event # 32    0.883410   ------------ the error at intervals

Network response: 

inputvec  :    1.00    1.00 response :    0.015
inputvec  :    0.00    0.00 response :    0.003
inputvec  :    1.00    0.00 response :    1.002
inputvec  :    0.00    1.00 response :    1.001

Final Weights

 0.0000  0.0000 -5.2722 -1.4644  0.0000  0.0000
 0.0000  0.0000 -6.7207 -1.4960  0.0000  0.0000
 0.0000  0.0000  0.0000  0.0000 -3.0197  0.0000
 0.0000  0.0000  0.0000  0.0000  3.1998  0.0000
 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
 0.0000  0.0000  0.7118  1.4773 -0.5769  0.0000

---- rows are origin of connections, columns destination, i.e. in row one, one finds that neuron 1 is 
connected to neurons 3 and 4, and row 5 shows that neuron 5 (the output neuron) does not 
provide input to anything.  The last row is the offset neuron, number 6, which provides inputs to all
except the two inputs and itself.

KNOWN BUGS AND HASSLES (TO BE FIXED IN FUTURE RELEASES)

1. In Slug :

a) Make text controls which are merely informative static.
b) Perhaps put informative data in a separate dialog window.
c) Icon doesn't show when minimized.
d) Add graphical display of network and network training progress.
e) Add help.

2. In the starter kit :

a) Add error checking for failures to allocate things on the heap.
b) Make Croupier object index work with integer, not real dynamic vectors.
c) Priority one : add conjugate gradient training.



d) Work on second derivative training methods.
e) Is it worth it to implement everything using integer arithmetic only?
f) Add automatic data scaling.
g) Maybe get rid of float object - too much memory overhead...
h) Make help files.

Suggestions are not only very welcome, but perhaps even required.



---------------------------- CUT HERE -----------------------------

REGISTRATION / ORDER FORM

NAME : __________________________________

ADDRESS : __________________________________

  __________________________________

  __________________________________

  __________________________________

PHONE : COUNTRY CODE _____ AREA CODE______ NUMBER ______________

FAX :_______________

E-MAIL :______________________________________

Mark the correct choices :

____ $10 for registration of SLUG only.

____ $50 for registration of SLUG and the Starter Kit.

____ $40 for the Starter Kit Only (I have registered my copy of SLUG)

____ Bank draft is enclosed.

____ Debit my 

____ MASTERCARD   NUMBER _______________________________

____ VISA CARD NUMBER _______________________________

-----------------------------------------------------------------------


